Jurisson, S., Berning, D., Jia, W. \& Ma, D. (1993). Chem. Rev. 93, 1137-1156.
Lock, C. J. L. \& Turner, G. (1978). Acta Cryst. B34, 923-927.
Roodt, A., Abou-Hamdan, A., Engelbrecht, H. P. \& Merbach, A. E. (1999). Advances in Inorganic Chemistry, Vol. 48, edited by A. G. Sykes, ch. 2, pp. 69-135. San Diego: Academic Press.
Roodt, A., Engelbrecht, H. P., Botha, J. M. \& Otto, S. (1999). Technetium, Rhenium and Other Metals in Chemistry and Nuclear Medicine, Vol. 5, edited by M. Nicolini \& U. Mazzi, pp. 161-166. Padova: Servizi Grafici Editoriali.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.
Tsang, B. W., Reibenspies, J. \& Martell, A. E. (1993). Inorg. Chem. 32, 988-994.
Wang, Y.-P., Che, C.-M., Wong, K.-Y. \& Peng, S.-M. (1993). Inorg. Chem. 32, 5827-5832.

Acta Cryst. (1999). C55, 1650-1652

[N, N^{\prime}-Bis(5-bromosalicylidene)-1,3-diaminopropane]copper(II) \dagger

Mehmet Kabak, ${ }^{a}$ Ayhan Elmall, ${ }^{a}$ Ebru Kavlakoğlu, ${ }^{a}$ Yalçin Elerman ${ }^{a}$ and T. Nuri Durlu ${ }^{b}$
${ }^{a}$ Department of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey, and ${ }^{b}$ Department of Physics, Faculty of Art and Sciences, Kırıkale University, 71450 Yahsihan, Kırıkale, Turkey. E-mail: kabak@science.ankara.edu.tr
(Received 7 December 1998; accepted 21 June 1999)

Abstract

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, has a crystallographic twofold axis. The coordination geometry about the $\mathrm{Cu}^{\mathrm{II}}$ centre is a tetrahedrally distorted square plane formed by the four-coordinate $\mathrm{N}_{2} \mathrm{O}_{2}$ donor set of the Schiff base imine-phenol ligand. The $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ distances are 1.967 (5) and 1.914 (4) \AA, respectively.

\section*{Comment}

Schiff base complexes are considered to be among the most important stereochemical models in maingroup and transition metal coordination chemistry due to their preparative accessibility and structural variety (Garnovskii et al., 1993). Transition metal Schiff

^[\dagger Systematic name: $\left\{4,4^{\prime}\right.$-dibromo- $2,2^{\prime}$-[1,3-propanediylbis(nitrilo-methylidyne)]diphenolato- $\left.O, N, N^{\prime}, O^{\prime}\right\}$ copper(II).]

base complexes are of interest in catalysis (Jacobsen et al., 1991) and in small-molecule binding (Jones et al., 1979; Chen \& Martell, 1987). We have reported previously the structures of several dimeric and monomeric Schiff base complexes of copper(II) (Elmali et al., 1993, 1995, 1997; Elerman et al., 1995; Elerman \& Geselle, 1997). We report here the results of the reaction of copper(II) with the tetradentate ligand N, N^{\prime}-bis(5-bromo-2-hydroxybenzylidene)-1,3-propanediamine, to form a monomeric Schiff base complex of copper(II), (I).

(I)

The bond lengths and angles around the Cu atom are in good agreement with the values found in other tetracoordinated copper complexes with similar ligands (Baker et al., 1970; Labisbal et al., 1994; Yao et al., 1997; Lo et al., 1997). The Cu atom is coordinated by two imine N atoms and two phenol O atoms from the imine-phenol ligand in a distorted square-planar coordination geometry. The atom with the greatest deviation from the coordination plane [Cul, N1, Ol, $\mathrm{N} 1^{\mathrm{i}}$ and Ol^{i}; symmetry code: (i) $-x, y,-\frac{1}{2}-z$] is Ol at 0.458 (4) \AA. The unique half of the Schiff base ligand of the title compound is reasonably planar, with the maximum deviation from the plane defined by atoms $\mathrm{Ol}, \mathrm{N} 1, \mathrm{Cl}-\mathrm{C} 9$ and Brl being 0.168 (4) \AA for the Ol atom. However, the entire ligand is not planar, as the two halves are twisted with respect to one another. The least-squares planes through each half of the molecule are inclined at an angle of $35.6(1)^{\circ}$. In the free ligand, the same interplanar angle is $66.17(7)^{\circ}$ (Elerman et al., 1998); besides, the torsion angle of $-41.2(13)^{\circ}$ for $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 8{ }^{\mathrm{i}}$ supports the non-planarity of the molecule. It is possible that the Cu atom plays an important role in the planarity of the whole molecule.

The bond distances and angles in the chelating moieties of the molecule are significantly different from those present in the free ligand. In particular, the distances $\mathrm{Cl}-\mathrm{Ol}$ and $\mathrm{C} 6-\mathrm{C} 7 \quad[1.302$ (7) and 1.436 (9) \AA, respectively] are shorter than those found in the free ligand $[1.342$ (7) and 1.448 (8) \AA, respectively; Elerman et al., 1998], while the N1-C7 distance [1.288 (8) \AA] is longer [1.269 (7) \AA for the free ligand]. This trend, which has been observed already in some other complexes (Calligaris et al., 1972; Pahor et al., 1978), shows that an extended conjugation is present in the coordinated ligand.

All bond distances and angles in the title compound are within the ranges found for related derivatives (Riley et al., 1986; Zamian et al., 1995; Schmidt et al., 1996).

Fig. 1. The molecular structure and atomic labelling scheme of the title compound (ORTEP-3; Farrugia, 1997). Displacement ellipsoids are plotted at the 50% probability level and all disordered atoms are shown.

Experimental

The title compound was prepared from solutions of copper(II) acetate monohydrate ($0.099 \mathrm{~g}, 0.5 \mathrm{mmol}$) in methanol (25 ml) and N, N^{\prime}-bis(5-bromo-2-hydroxybenzylidene)-1,3-propanediamine ($0.235 \mathrm{~g}, 0.5 \mathrm{mmol}$) in dioxane (50 ml). The solutions were mixed and the reaction mixture was heated under reflux for 30 min . Single crystals of the product were obtained on cooling.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=501.65$
Monoclinic
$C 2 / c$
$a=21.432(4) \AA$
$b=8.158$ (1) \AA
$c=9.515(2) \AA$
$\beta=92.95(2)^{\circ}$
$V=1661.4(6) \AA^{3}$
$Z=4$
$D_{x}=2.006 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7S diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.512, T_{\text {max }}=0.541$
1957 measured reflections
1906 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.154$
$S=1.160$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=20.13-29.93^{\circ}$
$\mu=6.14 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$
Dark brown

1013 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.063$
$\theta_{\text {max }}=27.49^{\circ}$
$h=0 \rightarrow 27$
$k=0 \rightarrow 10$
$l=-12 \rightarrow 12$
3 standard reflections every 150 reflections intensity decay: -0.31%

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.97 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.23 \mathrm{e}^{-3} \\
& \text { Extinction correction: none }
\end{aligned}
$$

1906 reflections
Scattering factors from International Tables for
Crystallography (Vol. C)

H atoms constrained

116 parameters

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0700 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{gathered}
$$

Table 1. Selected geometric parameters $\left({ }_{A},^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 4$	1.899 (6)	Cl-C6	1.415 (8)
Cu 1 - Ol	1.914 (4)	C2-C3	1.364 (9)
$\mathrm{CuI}-\mathrm{Ni}$	1.967 (5)	C3-C4	1.389 (9)
$\mathrm{Ol}-\mathrm{Cl}$	1.302 (7)	C4-C5	1.368 (9)
N1-C7	1.288 (8)	C5-C6	1.419 (8)
NI-C8	1.475 (9)	C6-C7	1.436 (9)
$\mathrm{Cl}-\mathrm{C} 2$	1.410 (9)	C8-C9	1.463 (8)
$\mathrm{Ol}-\mathrm{CuI}-\mathrm{Ol}^{\text {i }}$	87.0 (3)	N1'-Cul-NI	97.9 (3)
$\mathrm{Ol}-\mathrm{CuI}-\mathrm{Nl}^{1}$	153.8 (2)	$\mathrm{Cl}-\mathrm{Ol}-\mathrm{Cul}$	128.0 (4)
$\mathrm{Ol}-\mathrm{CuI}-\mathrm{Ni}$	93.2 (2)	C8-C9-C8 ${ }^{1}$	120.9 (9)
Symmetry code: (i) $-x, y,-\frac{1}{2}-z$.			

The C 9 atom is disordered about a twofold axis and geometrical restraints were applied to the C8-C9 distance to prevent anomalous bond distances in the propanediamine chelate ring. The maximum and minimum residual electron-density regions were within $1.0 \AA$ of the Br atom.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: ORTEP-3 (Farrugia, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1075). Services for accessing these data are described at the back of the journal.

References

Baker, E. N., Hall, D. \& Waters, T. N. (1970). J. Chem. Soc. A, pp. 406-409.
Calligaris, M., Nardin, G. \& Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.
Chen, D. \& Martell, A. E. (1987). Inorg. Chem. 26, 1026-1030.
Elerman, Y., Atakol, O., Svoboda, I. \& Geselle, M. (1995). Acta Cryst. C51, 1520-1522.
Elerman, Y., Elmali, A., Kabak, M. \& Svoboda, I. (1998). Acta Cryst. C54, $1701-1703$.
Elerman, Y. \& Geselle, M. (1997). Acta Cryst. C53, 549-551.
Elmali, A., Atakol, O., Svoboda, I. \& Fuess, H. (1993). Z. Kristallogr. 203, 271-274.
Elmali, A., Atakol, O., Svoboda, I. \& Fuess, H. (1995). Acta Cryst. C51, 2520-2522
Elmali, A., Elerman, Y., Svoboda I., Fuess, H., Griesar, K. \& Haase, W. (1997). Z. Naturforsch. Teil B, 52, 157-161.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Garnovskii, A. D., Nivorozkhin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
Jacobsen, E. N., Zhang, W., Muci, A. R., Ecker, J. R. \& Deng, L. (1991). J. Am. Chem. Soc. 113, 7063-7064.

Jones, R. D., Summerville, D. A. \& Basolo, F. (1979). Chem. Rev. 79, 139-179.
Labisbal, E., Romero, J., García-Vázquez, J. A. \& Sousa, A. (1994). Acta Cryst. C50, 1043-1044.
Lo, J.-M., Yao, H.-H., Liao, F.-L., Wang, S.-L. \& Lu, T.-H. (1997). Acta Cryst. C53, 848-850.

Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Window's. Version 1.03. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pahor, N. B., Calligaris, M., Nardin, G. \& Randaccio, L. (1978). Acta Cryst. B34, 1360-1363.
Riley, P. E., Pecoraro, V. L., Carrano, C. J., Bonadies, J. A. \& Raymond, K. N. (1986). Inorg. Chem. 25, 154-160.
Schmidt, H., Bashirpoor, M. \& Rehder, D. (1996). J. Chem. Soc. Dalton Trans. pp. 3865-3870.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Yao, H.-H., Lo, J.-M., Chen, B.-H. \& Lu, T.-H. (1997). Acta Cryst. C53, 1012-1013.
Zamian, J. R., Dockal, E. R., Castellano, G. \& Oliva, G. (1995). Polyhedron, 14, 2411-2418.

Acta Cryst. (1999). C55, 1652-1654

Bis $\{(\mu$-nitrato) $[\mu$-bis(salicylidene)-1,3propanediaminato]copper(II) $\}$ zinc(II) \dagger

Dinçer Ülkü, ${ }^{a}$ Leyla Tatar, ${ }^{a}$ Orhan Atakol ${ }^{b}$ and Sefa Durmuşs ${ }^{b}$
${ }^{a}$ Hacettepe University, Department of Engineering Physics, Beytepe 06532, Ankara, Turkey, and ${ }^{b}$ Ankara University. Department of Chemistry, Tandoğan 06100, Ankara, Turkey. E-mail: dulku@lidya.cc.hun.edu.tr

(Received 26 April I999; accepted 23 June 1999)

Abstract

The title compound, $\left[\mathrm{Zn}\left\{\mathrm{Cu}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right\}_{2}\right]$, has the central Zn^{2+} ion located on an inversion centre, with four bridging O atoms from two N, N^{\prime}-bis-(salicylidene)-1,3-propanediaminate (SALPD ${ }^{2-}$) ligands and one O atom from each bridging nitrate group as nearest neighbours. This arrangement constitutes a distorted octahedral coordination around the Zn^{2+} ion. The inversion-related terminal Cu^{2+} ions have irregular square-pyramidal coordinations involving two O and two N atoms of a SALPD ${ }^{2-}$ ligand and one O atom from a nitrate group in the axial position. The $\mathrm{Zn}-$ Cu pairs are triple bridged by the SALPD ${ }^{2-} \mathrm{O}$ atoms and by the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ atoms of the nitrate groups. The $\mathrm{Zn} \cdots \mathrm{Cu}$ bridging distance is 3.0017 (6) \AA.

[^1]
Comment

The structure and magnetic properties of the trinuclear complex $\left[\mathrm{Zn}\left\{\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(\text { SALPD })\right\}_{2}\right]$ have been reported previously (Fukuhara et al., 1990). Similar examples of trihomo- and heteronuclear complexes have . been prepared in our laboratory using different metal ions, acetate or nitrite groups, and the ligand N, N^{\prime} -bis(salicylidene)-1,3-propanediamine. The structures of these complexes have also been described (Ülkü, Tahir et al., 1997; Ülkü, Ercan et al., 1997; Ercan et al., 1998; Tahir et al., 1998; Atakol et al., 1999). These triplebridged linear complexes are of interest because of their magnetic properties.

We report here a new heterometallic trinuclear complex, $\left[\mathrm{Zn}\left\{\mathrm{Cu}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right\}_{2}\right]$, (I), which, in addition to the two O -atom bridges between a pair of metal ions, has a third bridge provided by an NO_{3} group. In our previously reported complexes, the third bridge was either an acetate or a nitrite group.

(I)

The central Zn^{2+} ion, located on an inversion centre, has a distorted octahedral coordination involving four bridging O atoms from two SALPD ${ }^{2-}$ ligands in the equatorial plane [$\mathrm{Ol}, \mathrm{O} 2, \mathrm{Ol}^{i}$ and O^{i}; symmetry code: (i) $-x,-y,-z]$ and an O atom from each of the two bridging nitrate groups occupying the apical positions (Fig. 1). The $\mathrm{Zn}-\mathrm{O} 1, \mathrm{Zn}-\mathrm{O} 2$ and $\mathrm{Zn}-\mathrm{O} 3$ bond lengths are 2.063 (2), 2.055 (2) and 2.188 (2) \AA, respectively. The $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ bond angles within the distorted octahedra range from 76.04 (9) to 93.74 (9) ${ }^{\circ}$. Owing to the inversion centre, the Zn^{2+} ion is in the equatorial plane.

The coordination around the terminal Cu^{2+} ions, related by the inversion centre, is an irregular square pyramid. The basal plane, defined by the O1, O2, N1 and N 2 atoms, consists of two N and two bridging O atoms from a SALPD ${ }^{2-}$ ligand. The axial position of the square pyramid is occupied by an O atom of the bridging NO_{3} group. The two $\mathrm{Cu}-\mathrm{O}$ bond lengths [1.945 (2) and 1.941 (2) \AA], as well as the two $\mathrm{Cu}-$ N distances [1.964 (3) and 1.959 (3) \AA] in the basal plane, are equal among themselves within experimental error. The $\mathrm{Cu}-\mathrm{O} 4$ distance along the pyramidal axis is considerably longer [2.355 (3) \AA] than those observed in the basal plane. The bond angles in the five coordinated polyhedra have values between $81.5(1)(\mathrm{Ol}-\mathrm{Cu}-\mathrm{O} 2)$

[^1]:
 † Alternative name: bis(μ-nitrato) $-1: 3 \kappa^{2} O: O^{\prime}: 2: 3 \kappa^{2} O: O O^{\prime}$-bis $\left\{\mu-2.2^{\prime}-\right.$ $3 \kappa^{2} O, O^{\prime}: 2 \kappa^{4} N, N^{\prime}, O, O^{\prime}: 3 \kappa^{2} O, O^{\prime}$-zinc(II)dicopper(II).

